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FOREWORD 

This report was prepared by the Space and Information Systems 
Division of North American Aviation, Inc., Downey, California, for the 
George C. Marshall Space Flight Center, National Aeronautics and Space 
Administration, Huntsville, Alabama, under Contract No. NAS8- 11490, 
"Study of Longitudinal Oscillations of Propellant Tanks and Wave Propaga- 
tions in  Feed Lines, dated January 6 ,  1965. Dr. George F. McDonough 
(Principal)  and Mr. Robert S. Ryan (Alternate) of Aero-Astrodynamics 
Laboratory, MSFC, a r e  Contracting Officer Representatives. The work is 
published in five 

Part1 - 

P a r t  11 - 

P a r t  111 - 

Part IV - 

P a r t V  - 

separate parts: 

One-Dimensional Wave Propagation in a Feed Line 

Wave Propagation in an Elastic Pipe Filled With 
Incompressible Viscous Fluid 

Wave Propagation in an Elastic Pipe Filled With 
Incompressible Viscous Streaming Fluid 

Longitudinal Oscillation of a Propellant - Filled Flexible 
Hemispherical Tank 

Longitudinal Oscillation of a Propellant- Filled Flexible 
Oblate Spheroidal Tank 

The project was carried out by the Launch Vehicle Dynamics Group, 
Structures and Dynamics Department of Research and Engineering Division, 
S&ID. 
Aviation, Inc. The study was conducted by Dr.  Clement L. Tai (Principal 
Investigator), Dr. Michael M. H. Loh, Mr. Henry Wing, Dr. Sui-An Fung, 
and Dr. Shoichi Uchiyama. 
of Part IV, left in the middle of theprogramto teach at the University of 
Wisconsin. The computer program was developed by Mr. R.A.  Pollock, 
Mr. F . W .  Egeling, and Mr. S .  Miyashiro. 

Dr.  F. C. Hung was the Program Manager fo r  North American 

Dr. James Sheng, who started the investigation 
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ABSTRACT 

2 s  The study of the longitudinal wave propagation in an 
elastic pipe filled with imcompressible viscous fluid at 
r e s t  has been extended to include the effect of steady 
stream. 

The Navier-Stokes equations a r e  first introduced for 
an axisymmetric and incompressible flow. 
and simplification a r e  obtained by the assumptions of 
small disturbance and small fluid viscosity. 
the boundary conditions, the equations of motion of the 
pipe a r e  greatly simplified and become linear. 
bation technique is applied; the perturbed equations a r e  
solved by two transformations and the boundary layer 
method. Finally, based on the equations of motion of 
pipe and fluid and proper boundary conditions, a character-  
is t ic  equation i s  formed in  te rms  of phase velocity ratio 
and four independent parameters - viscosity parameter, 
steady-state velocity parameter, and the axial and radial 
inertia parameters,  This fourth- order complex -valued 
characteristic equation is  then separated, corresponding 
to real  and imaginary parts, into two equations that a r e  
solved by digital computing. The method of numerical 
analysis and computing procedures a re  described in 
detail and some results a r e  presented. 

Linearization 

By linearizing 

Pertur-  

- v -  

SID 66-46-3 



N O R T H  A M E R I C A N  AVIATION,  INC.  SPACE and INFORMATION SYSTEMS DIVISION 

CONTENTS 

Section 

NOMENCLATURE 0 . . . . 0 

1 INTRODUCTION . . 0 . . 0 0 0 . 
2 BASIC EQUATIONS . 0 0 0 . 0 

3 PERTURBATION METHOD 0 . . 
Steady-State Solution 0 0 . . 0 0 . 
The Perturbation Equations . 0 . . 0 . . 
Solution to  the Perturbed Equations . 0 . 0 . 

4 

5 

NUMERICAL SOLUTION 0 . . . 0 . 
CONCLUDING REMARKS AND RECOMMENDATIONS. 0 

REFERENCES . . . . 

Page 

xi 

1 

3 

5 
6 
8 
9 

19 

21 

23 

- vii - 
SID 66-46-3 



N O R T H  A M E R I C A N  AVIATION,  INC. SPACE and INFORMATION SYSTEMS DIVISION 

ILLUSTRATIONS 

Figure 

1 

2 

3 

4a 
4 b  
5a 
5b 
6 
7 
8 
9 
10 
1 la 
1 l b  

E r r o r  Contour-Plot Solution for Equations (3- 52)  and 

E r r o r  Contour-Plot Solution for Equations (3-  52) and 
. 

E r r o r  Contour-Plot Solution for Equations ( 3 -  52)  and 

Radial Displacement of the Pipe W a l l  . 
Radial Oscillation of the Pipe W a l l  . 
Axial Displacement of the Pipe W a l l  . 
Axial Oscillation of the Pipe W a l l  . 
Axial Steady- State Velocity Profile 
Radial Steady- State Velocity Profile 
Pressure  Oscillation Curve . 
Axial Perturbed Velocity Profile N e a r  the P ipe  W a l l  
Axial Velocity Profile for the Superimposed Flow . 
Hoop Tension Curve . 
Tensile Force in the Axial Direction . 

(3 -53) ,  Showing One Solution . 
(3-  53 ) ,  Showing Two Solutions and Their Images 

(3- 5 3 ) ,  Showing No Solution . 

. 

. 

Page 

25 

26 

27 
28 
2 8  
29 
29 
3 0  
3 0  
31  
31  
32 
3 2  
3 3  

SID 66-46-3  



N O R T H  A M E R I C A N  AVIATION,  INC.  SPACE and INFORMATION SYSTEMS DIVISION 

NOMENCLATURE 

*1 

Bl 'C ,  C' 

C 

=0 

e 

el  

e2 

E 

h 

i 

I 

k 

ki 

k2 

K1 

K2 

L 

Constant 

Constants 

Phase velocity 

Phase velocity in fluid a t  res t  

Root-mean-square e r r o r  of e l  and e2 

E r r o r  from f i r s t  equation 

E r r o r  from second equation 

Young's modulus of materials 

Thickness of pipe wall 

2 2 (1  - Q  1 P O W  
J-l 

- 
Wall inertia factor, I = 

Ek2 

Complex propagation constant, k = k l  t ik2 

Phase factor 

Attenuation factor 

Phase velocity parameter,  K1 = - :Jc 
Attenuation parameter,  K2 - -- k2 [T 

1" 2% 

Length of pipe 

- xi - 
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n 

0 - - 
P 

P 

Q 

r 

t 

T 

U 

U 

US 

V 

V 

W 

w 
X 

X 

Y 

z 

Constant 

Indicates order  of magnitude 

P res su re  

Constant ( r e fe r  to Equation (3-24) 

Volumetric flow rate 

Coordinate in radial direction 

Time 

Tensile force ( re fer  to Equations ( 2 - 6 )  and ( 2 - 7 ) )  

Displacement of pipe wall in axial direction 

Constant 

Average steady - state vel0 city 

Fluid velocity component 

Function of r ( re fer  to Equation 3-22) 

Displacement of pipe wall in radial direction 

Constant ( r e fe r  to Equation 3-25) 

Coordinate in axial direction 

Function of r ( re fer  to Equation 3 - 2 1 )  

r 
Radius ratio, y =- 

0 
R 

1 /2  
Viscosity parameter,  z = R~ (5) 

all, ~ ~ 1 2 , 0 2 1 ,  az2 Coefficients ( r e fe r  to Equation 3-45) 

P 
2 

(1  -r ) P o h  

2 P R  
Axial inertia parameter,  P = 

0 
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v 

rl 

2 .rrh 

CL 

P 

(r 

T 

W 

n 

US 

rm--- 
Steady-state velocity parameter,  Y = 

I -  

O 
4 2 P  R 

Small distance 

-2 
= z  P 

P w R o  
2 Dimensionless number, E = 

poo 2 Ro2 

E Radial inertia parameter,  q = 

Wave length 

Dynamic viscosity 

Mass density 

Poisson's ratio 

Stress  component 

Function of y ( refer  to Equation(3-32)) 

Function of S2 ( refer  to Equation ( 3 - 3 6 ) )  

Stream function 

Function of r ( re fer  to Equation 3-29) 

Phase velocity ratio, X =- 
0 

Circular frequency of disturbance 

Dimensionless independent variable, 

n = -= z (1-y) (refer to Equation (3 -36) )  
E n  

- xiii - 
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Supers c ript s 

S 

I 

Subscripts 

0 

1 

e 

X 

r 

Steady s t ream 

Perturbed s t ream 

U nstre  s sed 

Sur  rounding mat e rials 

Circumfe rential di recti on 

Axial  direction 

Radial direction 

- xiv - 
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1. INTRODUCTION 

The problem of wave propagation in an elastic pipe filled with 
incompressible and viscous fluid was discussed in Part I1 of this report  
(Reference 1). The work discussed in this par t  extends the investigation 
to a more general situation in which the pressure waves travel through a 
system filled with streaming fluid. 

The propagation of p ressure  waves through liquid-filled elastic pipes 
has been investigated by many authors; attempts to take account of the steady 
s t ream have also been made by others (References 2, 3,  4, 5, and 6). In 
the previous works, either the motion was restricted to parallel flow o r  the 
average s t ream velocity was used instead of the actual nonuniform velocity, 
as has been discussed in Part I1 of this report. The present investigation 
set  out with the classical  Navier -Stokes equations of two-dimensional flow 
with axisymmetric motion. 
on the basis of a thin shell. 
t e r m s  of small  order of magnitude, 
and boundary la er analysis based on the smallness of the parameter 
(1 /Ro)( P/m P 1 / I ,  a characterist ic equation is obtained. The general 
approach to the solution follows closely the procedures of Morgan and 
Fer ran te  (Reference 5), who merit full credit of their excellent work. 
terms contributed by the radial pipe wall inertial forces,  which were omitted 
by Morgan and his associate, a r e  retained in this analysis. 
wave propagation of light-weight fluid such a s  liquid hydrogen through a 
metallic tube, it is important to examine the effect of both these inertial 
forces. 

The elastic equations of the pipe a r e  derived 
These equations are simplified by omitting 

By means of the perturbation technique 

The 

In the case of 

The characteristic equation is being solved numerically with the aid of 
a digital computer. 
will reveal the relations among the various parameters  and the influence of 
the steady s t ream upon which waves a r e  superposed. 
nature of the characteristic equations, at the time this report  was prepared 
no conclusive results comparable to  those of wave propagation through fluid 
at  r e s t  have been obtained. 
fully and partial  results a r e  presented. 

It is hoped that the results of the numerical analysis 

Due to  the complex 

However, the analytical procedures a re  discussed 

- 1 -  
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2. BASIC EQUATIONS 

The Navier -Stokes equations expressed in cylindrical coordinates with 
the assumptions of incompressible fluid and axisymmetrical motion a re  

QVr vr 32-Y 

r a r  2 ax 2 
r 1  4) (2-1) -)=-Etp(yt---- a r  

3 vr a vr' 32, 
ap t v  r - t v  a r  

x ax 

(2 -2) 
ax  

Here P and p a re  the mass  density and dynamic viscosity of the fluid, 
respectively; p is the pressure;  Vx and vr a r e  the velocity components of 
fluid in the axial and radial directions, respectively. 

The continuity equation is 

avx v r avr 
+- t -= 0 

a x  r a r  (2-3) 

The normal and shear forces acting on a unit a rea  perpendicular to the 
radius a re  given by 

rx  

I -  

For  a thin elastic pipe, the hoop tension, To, and the tensile force,  
T,, respectively, a r e  

(2-5) 

- 3 -  
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Eh t 5- 
2 (- a x  R w ,  0 

- 
Tx - 

1 - i J  

where u and w are the axial and radial components of displacement of the pipe 
wall. Then the equations of motion of the pipe a r e  given in the following 
forms: 

rx 
at 

where p and h a re  the mass  density and thickness of pipe wall, respectively. 
0 

- 4 -  
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3. PERTURBATION METHOD 

Since we a r e  investigating the problem of pressure wave propagation 
superposed on a steady stream, w e  assume all the dependent variables to 
have the form 

s 
u = u  t u '  (3-1)  

(3-2)  
S w = w  t w '  

S v = v  t v '  
x x  X (3-3)  

S 
v = v  + v '  ( 3  -4) r r  r 

p = ps + p' (3-5)  

where the superscripts s and prime refer to steady and perturbed quantities. 

Applying the perturbation solutions Equations (2  - 1) and (2 -2) yield two 
sets of equations for  the steady and the perturbed motion. 
states 

For the steady 

S 

r 1  r 
2 r -  a r  2 ( 3  -6) 

r 

S 2 s  2 s  
av s a v  

ax 
P 

a r  r a r  x ax a r  

2 s  S 

t- a 2 q  (3-7) S av 
S 

v -  
av 

s x  s x  
t-- 

2 r a r  2 ax 
For  the perturbed state, with the nonlinear te rms  of primed quantities omitted, 

6 
av r S a V t r  3-7' r a v: S av; 

+ v' - t v  - t v '  - t v '  - t v  - t v ' -  
a t  r a r  r a r  r ar  x ax x ax x ax 

- 5 -  
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S S 
X av  a v; 

t v  - t v ' -  t v '  - t v '  - t v  - a t  r a r  r a r  r a r  x ax  x ax 
X S 

a v  a V; x s p ("YI 

t- 
x 1  x t-- 

2 
ax  

a V I  

a x  2 r a r  
- - - -  (3-9) 

If we linearize the boundary conditions at the interface of pipe and 
fluid by evaluating parameters  at Ro rather  than at the t rue radius R, the 
Equations (2-8) and (2-9) become linear. Then the elastic equations (2-8) 
and (2-9) and the continuity equation (2-3) apply'to both the steady and 
perturbed states with appropriate superscripts. 

STEADY-STATE SOLUTION 

The investigation commences with the assumption of steady-state flow. 
Since it i s  stipulated that the slope of the disturbed pipe wall is very small, 
the radial  velocity, v:, and its derivatives may be expected to be small. 
F rom Equation (3 -6 ) ,  it may be said that p is  a function of x only and the con- 
tinuity equation, av$/ax becomes very small, then Equation (3-7) becomes 

(3-10) 

Integrating Equation ( 3 -  10) with proper boundary conditions, the velocity 
profile is obtained: 

s (Rs)2 dpS v =- - -  
X 4 P  dx [+j] (3-11) 

S 
If the average velocity and volumetric flow.,rate a r e  denoted by U 
respectively, the pressure gradient may be expressed as 

and Q 

(3-12) 

S 
Neglecting v , Equations (2-8) and (2-9) of steady flow become r 

(3-13) 

- 6 -  
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(3-14) 

Differentiating Equation (3-13) with respect to x and combining with Equa- 
tions (3-12) and (3-14) gives 

Integrating f rom x = 0 to x = L, gives 

S 

L 
S 

x = L  x = o  
- 4(2 - o - )  PU 

Eh W = w  

(3-15) 

(3-16) 

If pxzo is denoted a s  the average pressure at  this entrance section of 
the pipe where x = 0 and us = 0, by s t ress-s t ra in  relation,w 
expressed as 

may be x = o  
3 

(3-17) 

S S S S Since vx and V r  may be written in terms of R 
Equations (3-11) and (3-15)), then terms like avg/ax and av;/ax may be 
evaluated. 
Equations (2 - 1) , we have 

and R in terms of x ( refer  to 

(2  -3), and hydrodynamic Thus, by using the continuity Equation 

2 2  - 16pQ R 
v =  S (3-18) r 

S 
The axial displacement, u , is found through Equation 

c x /  2 s\ R 
S i - @  s 

u =Jo ( - x p  
0 

3-13, 

(3-20) 

- 7 -  
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THE PERTURBATION EQUATIONS 

The pertinent equations of the liquid motion a r e  Equations (3 -8 )  and 
(3-9) .  
time and of small amplitude. 
expressed as 

The investigation will be limited to a disturbance that is harmonic in 
By the first limitation, V I  and v1 may be 

X r 

vx - X ( r ) e x p  - [ i ( k x - w t ) ]  ( 3 - 2 1 )  

vr = V ( r ) e x p  [ i ( k x - w t ) ]  ( 3 -  22) 

where X and V a re  functions of r ,  w is the circular frequency of the forced 
disturbance, k is a complex propagation constant and may be expressed as 
kl t ik2, of which kl is  the phase factor representing the phase shift and k2 
is an attenuation factor representing a measure of the decay of the disturbance 
a s  the wave travels along the pipe. 
nonlinear terms of the primed quantities in Equations (3-8)and (3-9) become 
negligibly small and a re  dropped from the equations. 

Because of the second limitation, the 

Further simplification of the equation may be obtained by dropping the 
terms v;(av;/ar), v;(dvs /ar)and a 2 1  vx/ax2, because the relative magnitudes 

v$(avi/ax), and a 2 v'/ar2. 
of these te rms  a re  much smaller than the corresponding te rms  vk(8v$/ar), 

Thus, Equation (3-9)becomes 

X s " x \  2 1  

I Since vr and its derivatives a r e  expected to be small, a s  mentioned before, 
f rom Equation (3-8), ap*/ar = 0;  therefore, we may write 

p1 = P exp [i ( k ~  - u t ) ]  (3-24) 

consequently, f o r  a thin-wall pipe, we may also write 

w1 = w exp [i ( k ~  - u t ) ]  (3-25) 

u* = u exp [i ( k ~  - a t ) ]  (3-26) 

- 8 -  
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where P, W and U a re  all constants, 
wall become 

Then the equations of motion of the pipe 

- Eh2(q+i<l$ t (.-2p-$)=- p 0 hwW 2 

Eh2 (.'..it..> - p @ ) = - p  0 h o U  2 

1 - 0  Ro 

1 - 0  

Solving these two equations, gives 

(3 -27) 

r = Ro 

icr w 
k R  1 - 1  

u=--- 
0 

2 (3-28) 
- R kilrl(r_ EhW EhWI 

2 2 P =  
R 2(1 -I) (1 - u  )Ro (1 - I )  o 

r = Ro 0 

where 
p o2 (1 4 2 )  
0 

2 I =  
Ek 

2 
and is called the wall inertia factor. 
the influence of the radial wall inertia. 

The last term,  Pohw W, representing 

SOLUTION TO THE PERTURBED EQUATIONS 

I 
Introducing the s t ream function $' (x, r ,  t) and letting 4 = Q (r) . 

exp [i (kx - w t)] , .Equation (3-23)  becomes 

- 4i P krUS \ E t i i P = O  ikr 

tl (RS? 

- 9 -  
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The relationships betweenvk, vk and cc1' a r e  vk = ( - l / r )  (a+ ' /ar)  and 
vi = ( I / r )  (a+ I /ax ) .  In addition, 

k 
r 

V ( r )  = i - + 
(3-30) I 

The nonslip boundary condition at the pipe wall may be written as 

8U1 v1 (Ro, x, t) = - 
X a t  

awl 
V' (Ro, X, t) = - 
r a t  

Thus, 

X(Ro) = - iwU 

V(R ) = - i o W  
0 

(3-31) 1 
Using Equations (3-27), (3-28), and (3-29) together with the boundary 
Equation (3-31), the three unknowns U, W and \E can be solved. 

Since the viscosity is assumed to be small, the technique customarily 
applied in boundary layer analysis may be used to solve the present problem. 
Letting y = r / R o  and Q = C+(y) where C is a dimensioned constant, then 
Equation (3 -29) becomes 

S 

t$ 
d+ 4ikU y 

W 

Y 

2 
ikR P 

0 
y = o  (3-32) 

+ WPC 

where E = P/ Pw Ro2, a dimensionless quantity that is assumed to be small. 
The constant C can be so selected as to make the last t e r m  dimensionless. 
Such a C is C (w/k) (WR,). 

Since E is small ,  the influence of the viscosity will be limited to a 
narrow neighborhood near the wall. 
(cdn+/dyn) a r e  negligible outside the boundary layer,  compared with @ and 

Therefore,  it is  expected that € 4  and 

- 10 - 
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(dn$ /dy"). But this is not t rue near the wall. Let c$ = $o t 4c, where 9, 
is the solution of # away from the wall, and q5c is the correcting t e rm of q5 
within the boundary layer. 
flow region outside the boundary layer, 

By so doing, two equations result: f irst ,  for the 

= o  (3- 33) PW 

Its solution is 

R P  
0 

4us P w 
k s  1 - 2 - - , u  

where C' is an arbi t rary constant. 

Second, for the flow region inside the boundary layer. 

dy2 Y 

f -- - 

kUs - 4 i 7  y + c  = 0 

(3-  34) 

(3- 35) 

Before the solution is attempted, a new independent variable S2 and a 
new dependent variable wi l l  be introduced into the above equation. 
R = ( l / c n )  ( 1 - y )  where n is a positive number and Q (  a )  = $ c  (y). 
Equation ( 3- 35 ) becomes 

Let 
Then, 

(3- 36) 

- 11 - 
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From an examination of the coefficients of dnip/dQn, it is obvious that 
the f i rs t  and third terms a r e  larger  than the second and fourth. 
ones a re  dropped and the first and third te rms  assumed to be of the same order  
of magnitude so as to balance each other. 
n = 1/2. 

The smaller 

Thus we have 1 - 3n = -n, o r  
Equation (3-36) becomes 

3 d .dip 

d a 3  dn 
+1- = 0 

The solution of this equation, then, is 

( 3 -  37) 

The condition placed on 4c  and hence on ip is that ip approaches zero as r 
approaches zero. This i s  possible only i f  A2 = A3 = 0. 

From the relationship between ip and Q ,  an expression of Q is obtained 
However, C' may be in te rms  of the two  unknown constants, A1 and C'. 

determined by using Equation (3-30); that is, V( r ) o r  (i k / r )  *must vanish 
at r = 0. Thus we have 

CI = - -  k o  
L3 

4us  pw 

If a new constant, B1, is  defined containing the remaining unknown, A1, as 

w 
l i ;  WR 0 

B = A  1 

then 

- 12 - 
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Applying Equation (3-38)  to (3-30) gives 

k X(r )  = - 
W 

P 

P ( l - 2 ; u s )  0 
31 R (3-  3 9 4  

ikB 
V(r)  =- Pr t-. exp [ i IJ;1 E-‘( -4 (3-  39b) 

2 -ik 
r 

W 

Evaluating Equations (3-39)  at r = Ro and comparing the results with 
(3-31)  leads to Equations (3-40)  and (3-41) .  

1 - -  - L 
i 4 E  

B + i o U  = O  
2 1 

t 
k P - 
* P(  - 2 5 U s )  w R 0 

k B1 
R P  

0 - - - - w = o  
2 P ( 1 - 2 k U S )  w R  0 

0 

To determine U and P from Equations (3-27)and (3-28) .  

0 

must be evaluated first. From Equation (3-39a) ,  

d r  r = R  
0 0 

(3-40)  

(3-41) 

(3-42)  

The last two t e rms  can be dropped out; they a r e  insignificant because the 
boundary layer analysis can be expected to  yield a good approximation only 
to the first power of E .  

- 13 - 
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Substituting 

Bl i  

3 
R E  

- - 
d r  r = R  

0 0 

into Equations (3-27) and (3-28), we have 

2 i ( 1 - u  ) p B 1  

2 3 
Ehk ( 1  - I )  E Ro 

icrW 
k R  0 ( l - ' )  

u=-- (3-43) 

P =  
(I- I)RL ( 1  - u ~ )  (1  

0 

Substituting the above values of U and P into Equations (3-40) and (3-41), 
two simultaneous equations result: 

B = O  
"11 t"12 1 

W t c~~~ B1 = 0 
"21 

This system w i l l  have nontrivial solutions only i f  the determinant of the 
coefficients vanishes; that is 

This gives 

= o  
5 1  cu22 - 7 2  cY21 

(3-45) 

- 14 - 
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cy = -(--) k 3  ( - )  Eh 2 Ro (1 - 2:Us) ( 1  - 1 )  
11 

1 - Z - U ) ( l  k s  -I )  
w 

+ 
1 - 0  

\(Ro)' (1 - 2 k  Us) ( 1  - I )  
w 

O /  

+ [ ~ ( : ) ( ~ 0 ) ( l - 2 : u s ) P ( 1  - I )  1 

- z ( 1  - 0- 2 ) (1 - ( 1  - I)] [' 

1 - 2 kuS)-l ( 1  - I)-l -1 
cy 21 =(:T(2p?0)( 0 

crk 2k s k 
c y =  22 2wRO ( 1  - I) 

(3-45a) 

(3-45b) 

( 3 - 4 5 4  

(3 -45d) 

- 15 - 
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1 /2  
Rearranging Equation (3-45) and defining X = (k/o) (Eh/2pRo) , called 
phase velocity ratio, we have 

and 

t (1 - 2 k U 9  + R o e ]  1 X2 

2 
P ha 

--(1 1 -aZ) [(I - 2;us) t o2 (;i2 = 0 
4 

1 

1 - 1  = 0 

Four new parameters a r e  defined a s  follows: 

steady - stat e velocity 
parameter 

US Y =  

axial inertial 
0 parameter 

= 2PR 

2 2  
PoRo 

q =  ~ radial inertial 
u 

parameter 

1/2 
z = R o ( F )  viscosity parameter 

- 16 - 

(3-46a) 

(3-47a) 

(3-46) 

(3-47b) 

(3-47c) 

(3-47d) 

SID 66-46-3 



/ 

N O R T H  A M E R I C A N  AVIATION,  I N C .  SPACE and INFORMATION SYSTEMS DIVISION 

Equation ( 3 - 46) become s dimensionle s s: 

This is a fourth-order equation containing complex numbers. 
solve this equation is to separate its real  part  from the imaginary part. 
result  of this separation is 

One way to 
The 

(K; - 6K1 2 2  K2 t K:) ( - z ) ( l - q )  - (4K: K2 - 4K 

2 4  

t (Ki - 3KlKi)(2tcr)  Y +&(3K2 K -K2 ') + (.: - K $ t  -I> 
2& 

1 2  42  \ 

2 
0 t K1 (I -2u2)Y -7 1 - u  = 

- 17 - 
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W 

and 

K2 (.-$)y = o  (3-50)  

where 

is  the phase parameter 

and 

K =-- k2 ( fiRo)1’2 is the attenuation parameter 
2 w  

- 18 - 
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4. NUMERICAL SOLUTION 

There are several  ways to solve the two simultaneous fourth-order 
Equations (3-49) and (3-50). 
root-mean- square e r r o r  and contour plot technique is the most suitable 
m etbod. 

However, it seems that the combination of the 

A pair of values, one for the phase velocity parameter,  K1, and another 
for the attenuation parameter, K2, a r e  arbitrari ly chosen and substituted 
into the two equations. Since it is unlikely that the exact solution will be 
chosen, two e r ro r s ,  e l  and e2, result from these equations. If the root- 

mean-square of these two e r r o r s  be called e, then e = (et t The 

better the estimate is, the smaller the root-mean-square e r r o r  wil l  be. 
The set of K1 and K2 values causing e = 0 is the solution of the equations for 
the particular assigned values of the four independent parameters. 

Because of the limitations of the computer, the location of the point 
The way in which the where e = 0 must be determined by trial and error .  

computer program performs is, in  the region of K1 and K2 specified for 
the tr ial ,  hundreds of root-mean-square e r r o r s  are calculated; then, through 
these points, contour lines of different values of root-mean-square e r r o r  
a r e  drawn. 
the programmer from the K-graph which is the output of the designated K1 
and K2 computer program. Since it is difficult to make the right choice of 
the ranges of K1 and K2 on the f i rs t  estimate, the program must be run 
twice o r  more for one se t  of K1 and K2 values. Because of the combined 
effort of the computer and human judgement, the calculation becomes quite 
tedious and time consuming. 

The point having zero root-mean-square value i s  determined by 

Three K-graphs are attached: Figure 1 shows the coordinates,of one 
solution of K1 = 1.92 and K2 = 0. 01 for P =  4. 0, 11 = 0. 1, Y = 10-6, and 
z = 10. In Figure 2, there are two solutions of points K1 = 0.01, K2 = 0.93; 
and K1 = 0.77, K2 = -0.01 for = I = Y = 0 and z = 0.1. The other two 
points a r e  the images of the f i r s t  two. Since -K1 and -K2 will cause exactly 
the same numerical values of the e l  and e2 a s  tK1  and +K2, there is always 
a n  image point symmetrical +bout the origin where K1 = K2 = 0. Therefore, 
they a r e  not to be considered as  the solutions. Figure 3 shows no solution 
p i n t  in this regicr,  =f Ki &yd K2 fsr  the spzcified . .  pal.aii-*&er ---1-- - - v dlUt: 3. 

- 19 - 
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After the values of K1 and K2 a r e  found, they a r e  fed into another 
computing program called "FEDLIN" to calculate the velocity profiles and 
other needed values. The program has a subroutine for plotting graphs of 
different combinations of the independent variables o r  parameters.  Since 
the imaginary parts of the final answer have no physical meaning, only the 
rea l  par ts  of the complex values of the pressure  and velocities a r e  used in  
the graphs. 

By inspecting Equations (3-21) and (3-22), then (3-39), there is a 
singularity at the center of the pipe for  both v& and v&. The computing pro- 
gram for calculating and plotting the velocity profiles is, therefore, written 
to cover the radius ratio, r /Ro from 6 to 1. 0, where 6 is an a rb i t ra ry  
small  distance from the center line of the pipe. Since the flow is continuous 
and finite throughout the region, it is possible to assign a value of 6 as 
small  as we please. A set  of graphical 
results that includes different kinds of velocity profiles and pipe wall dis- 
placements is included at the end of this report. 

At the present, its value is 0. 1. 

Table 1 shows the values of the constants and parameters  used for 
making the calculations with the FEDLIN program. 

Table 1. Computer Input Data for  FEDLIN Program for Figures Indicated 

Term 

E 

(T 

px = o  
P 

x 

0 

t 

K1 

K2 
z 

'17 

Y 

P 

Unit 

Psi 

- 
Psi 

Psi 

Feet  

Rad/ S e c 

Sec 

- 
- 
- 
- 
- 
- 

Value::' 
~ 

Group 1 

3. o 107 

0.3 

40. 0 

2.0 

20.0 

0. 1885 

1.0 

0.241 

0. 308 

99.2 

1.37 x 1 0 - l 1  

0.011 

0.287 

Group 2 

3.0 107 

0.3 

40.0 

2.0 

15.96 

7.0 

0.224 

0. 16 

0.135 

10.0 

0.01 

1. o 10-4 

1.0 

+Group 1: Figures 4a, 5a, 6, 7, 9, and 10 
Group 2: Figures 4b, 5b, 8, l la,  and l l b  

- 20 - 
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5. CONCLUDING REMARKS AND RECOMMENDATIONS 

Because of the complex nature of the computing procedure, only a 
portion of the results have been generated to date. 
have shown that: 

These computer outputs 

1. The axial velocity profile of the perturbed state is extremely 
sensitive to the viscosity of the flowing fluid. 
layer  grows rapidly when the viscosity increases. 

The boundary 

2 .  The magnitude of the perturbed axial velocity is  very small  in 
comparison with that of the steady-state velocity. This is con- 
sistent with the a s  sumption of oscillation with small amplitude. 

3. The steady flow does affect the phase velocity in the fluid. 
However, more data a r e  needed to show the exact relationship. 

4. Additional computer data is required to show the interrelationships 
between velocity profiles and various parameters and to compare 
with the results of wave propagation through fluid at  res t  discussed 
in  Part LI. 

This study has covered the influence of pipe wall inertia in both the 
axial and radial directions. 
pressible fluid of such small viscosity that ( P U  /Eh)  (h/R ) << 1 for a 

long wave length disturbance. Because of the severity of this assumption, 
it is recommended that the study be extended to the more practical case of 
ignoring the small  viscosity effect but taking the compressibility of the 
huid into full account. 
approach would use the well-known wave equation coupled with Donnel's 
ax i  symmetr ical cylindrical shell equation. 

However, the results a r e  limited to an incom- 
S 

0 

Instead of the Navier-Stokes equation, this proposed 

- 2 1  - 
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K 

KI 
CONTOUR IDENT. 

1 4,291057 
2 0.5 821 1 3 
3 12.073110 
4 11.  164226 
5 21.455282 
6 25 -146339 
7 3Li.037395 
8 34.328.452 
9 38 .51 95D8 

A 42.910564 
B 47.2G162G 
C 5 1.4 92676 

E 6Li.014788 
F 64.365845 
G 68.6569LiG 
H 12.947956 
I 77.239012 

D 55.783132 

J 81.53LiM1 S 120.149569 
K e5.821123 T 124.44G624 

H 94.403234 V 133.Li22135 
N 98.694290 W 131.313791 
o 102.9a5346 X 141.6040447 
F 197.276402 Y 145.895903 
0 111.567451 
R 115.858513 

L 90.112119 u 12a.?31680 

Figure 1. E r r o r  Contour-plot Solution for Equations (3-52) 
and (3-531, Showing One Solution 
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K I  
CONTOUR I D E N T .  

1 0.131019 
2 '3.263638 
3 0.3954 56 
4 0.5 2727 5 
z 0.659094 
6 0. 7 9G913 
7 0 .922731 
8 1.1354555 
9 1. I86369 

A i.3t8iaa 
B 1.450b06 
C 1.581825 
D 1 .I 13644 
E 1 .e45433 
F 1 .977282 
G 2.1091G0 
H 2.24591 9 
I 2.31 27 38 

2.504557 5 3.690926 
2.636375 1 3 .e22744 
2.768194 U 3.954563 
2.900G13 V 4 .G86381 

4.218201 3 .e31 831 U 
3 .I6365 i x 4.350G19 
3.295469 1 4.481838 
3.427288 
3.5 59 i 07 

Figure 2 .  E r r o r  Contour-plot Solution for Equations (3-52) 
and ( 3 - 5 3 ) ,  Showing Two Solutions and Their Images 
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K I  
CONTOUR IDENT. 

0.173072 
0.346 144 
0.5 192: 6 
0.6922EB 
0 .e65365 
I -0313431 
1.21iSG3 
1.384575 
1.557647 

A 1 .?3G719 
0 1.9G3791 
C 2.0T6862 
D 2.249935 
E 2.423G07 
F 2.596079 
c 2 .76915Ci 
n 2.942222 
I 3.1 15294 

3.280366 3 4.346013 
3.461438 T 5 .Gi9G84 
3.6U515 u 5.192157 
3.8G7582 v 5.365229 
3.98G654 u 5.538301 
4 .I53726 x 5.7 1 1 372 
4.326791 I 5.804444 
4.499069 
4.672941 

F i g u r e  3. Error Contour-plot Solution for Equations (3-52) 
and (3-53), Showing No Solution 
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7 .  IT (ft) 
7.93440 X 

Figure 4a. Radial Displacement of the Pipe W a l l  

TI* (14 

Figure 4b. Radial Oscillation of the Pipe W a l l  
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0 
T n r  (=) 

Figure 5b. Axial Oscillation of the Pipe Wall 
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- 2 .  

-2  

0 

. o  

X 

X 

0 
RADIUS RATIO (k) 

Figure 6. Axial Steady-State Velocity Profile 

RADIUS R A W  I 
0 

Figure 7. Radial Steady-State Velocity Profile 
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Figure 9. 

1.00 
WIUS UTI0 (6) 

Axial Perturbed Velocity Profile Near the Pipe W a l l  
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, o  0 
RADIUS RAT10 ‘6) 

Figure 10. Axial Velocity Profile for  the Superimposed Flow 

T l r n  (sec)  

Figure l l a .  Hoop Tension Curve 

- 32 - 
SID 6 6 - 4 6 - 3  



NORTH A M E R I C A N  AVIATION,  INC. SPACE and INFORMATION SYSTEMS DIVISION 

-1 

-1 4 

. 6 4 5  

t 710 
. .,- 

T I E  (su) 

Figure 1 lb. Tensile Force in the Axial Direction 
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